

Electrochemical quartz crystal microbalance studies of inert electrolyte cation roles during the electrochemical reduction of thin graphene oxide films

Medžida Durak¹, Lejla Vilašević¹, Selma Korać², Armin Hrnjić³, Sanjin J. Gutić¹

¹Faculty of Science - University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina

²Faculty of Pharmacy - University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina

³National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

The electrochemical reduction of graphene oxide films offers a promising method for precise control of the graphene oxide properties, important for applications in electrochemical capacitors, sensors, and electrocatalysis. While the primary role of an inert electrolyte is to maintain sufficient electrical conductivity, the choice of electrolyte can significantly influence the reduction behavior of graphene oxide films [1,2]. Notably, this effect appears to correlate with the size of the cation in the electrolyte, with trends in peak potential and other parameters following the Li -> Na -> K sequence. To better understand the influence of cation size in inert electrolytes, electrochemical quartz crystal microbalance (EQCM) measurements were conducted simultaneously with cathodic potential sweeps. The EQCM results reveal substantial differences in gravimetric behavior depending on whether the electrolyte contained Li, Na, or K cations. These variations can be explained by differences in the solvation and charge densities of the cations.

References

- 1. D. Karačić, S. Korać, A. S. Dobrota, Al. A. Pašti, N. V. Skorodumova, S. J. Gutić, (2019) When supporting electrolyte matters—Tuning capacitive response of graphene oxide via electrochemical reduction in alkali and alkaline earth metal chlorides. *Electrochimica Acta* 297 (2019) 112-117 https://doi.org/10.1016/j.electacta.2018.11.173
- D. Karačić, S, J. Gutić, B. Vasić, V. M. Mirsky, N. V. Skorodumova, S. V. Mentus, I. A. Pašti, Electrochemical reduction of thin grapheneoxide films in aqueous solutions—Restoration of conductivity. *Electrochimica Acta* 410 (2022) 140046 https://doi.org/10.1016/j.electacta.2022.140046