

Pechini method synthesis of Ho₂O₃ nanoparticles and its applications as a extremely sensitive electrochemical sensor for Diuron detection in tap water, apple and strawberry juice samples

Aleksandar Mijajlović¹, Vesna Stanković², Filip Vlahović², Slađana Đurđić , Kurt Kalcher³, Astrid Ortner⁴, Dalibor Stanković¹

¹ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
² Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, University of Belgrade, Njego^{*}seva 12, 11000 Belgrade, Serbia

Institute of Chemistry, Analytical Chemistry, Karl-Franzens University, Universitaetsplatz I/I, 8010 Graz, Austria
 University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry,
 Schubertstraße 1, 8010, Graz, Austria

ssmijajlovic905@gmail.com

Industrialization and intensive agricultural practices, which are connected to problems with flora and fauna and cause decrease in water quality owing to pollution by persistent and dangerous pesticides, have been encouraged by population increase¹.In the current study, a new electrochemical sensor for Diuron (DU) detection was developed using a carbon paste electrode (CPE) enhanced with Ho₂O₃ nanoparticles. Rare earth elements, such as Ho, are increasingly being employed to create novel electrode nanocomposites with improved electrocatalytic performance. Holmium has been regarded a major lanthanide element with higher redox reaction characteristics². The synthesis of Ho₂O₃ was carried out using the Pechini method for the first time, and the morphology and nanostructure of the material were confirmed by the use of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To develop an analytical method for DU identification and measurement, the electrocatalytic properties of the proposed Ho₂O₃ modified CPE were investigated. The electrochemical behaviour of DU at the Ho₂O₃ sensor was examined using the CV and SWV methodologies. The electrochemical sensor that was suggested had a remarkable response to DU, displaying a broad linear range of 0.25 to 200 μ M, a detection limit of 0.03 μ M, and a sensitivity of 2,14 μ A μ M $^{-1}$ cm $^{-2}$. The method's strong selectivity is confirmed by the minimal influence of potential interfering substances. Additionally, the sensor demonstrated outstanding stability, repeatability, and sensitivity. Furthermore, the Ho₂O₃-CPE sensor showed good recovery results when used to detect DU in water, apple, and strawberry samples. Also, its efficacy was validated by its successful use in the accurate measurement of DU levels in real samples, which was compared with conventional DU detection methods including UV-VIS detection.

References

- 1. S. M. Rad, A. K. Ray, S. Barghi, Water pollution and agriculture pesticide. Clean Technologies, 4(4) (2022) 1088–1102
- 2. N. A. Ferdiana, H. H. Bahti, D. Kurnia, S. Wyantuti, Synthesis, characterization, and electrochemical properties of rare earth element nanoparticles and its application in electrochemical nanosensor for the detection of various biomolecules and hazardous compounds, *Sensing and Bio-Sensing Research*, 41 (2023) 100573.