

Scalable synthesis of CoAu/rGO nanocomposite for sensing of As3+ ions in acidic media

<u>Aleksandar M. Đorđević</u>^{1,2}, Kristina Radinović³, Aleyna Basak⁴, Jadranka Milikić³, Nemanja Gavrilov³, Dalibor Stanković², Önder Metin^{4,5}, Biljana Šljukić^{3,6}

¹ University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia ²University of Belgrade, Faculty of Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia ³University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia ⁴Department of Chemistry, College of Sciences, Koç University, 34450 Istanbul, Türkiye ⁵Koç University Surface Science and Technology Center (KUYTAM), 34450 Sarıyer, Istanbul, Türkiye ⁶Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049–001 Lisbon, Portugal adjordjevic@iofh.bg.ac.rs

One of the most toxic heavy metals present in water is arsenic (As), which is why it is necessary to regularly monitor its content in drinking water[1]. In this work, a CoAu/rGO nanocomposite was synthesized by a scalable method and investigated for the detection of As ions in acidic media using anodic strip voltammetry. First, the operational parameters (deposition potential, E_d = -0.3 V and deposition time, t_d = 60 s) were optimized in 1 mM NaAsO₂in 1 M HCl, after which the limit of detection (LOD)was determined in a wide range of concentrationsfrom30 to 1000 μ M. In the mentioned range, shown in Figure 1, two areas of linearity were obtained (for low and high concentrations).LowLOD of As³+of 3.06 μ M was determined for the low-concentration region (30-90 μ M).

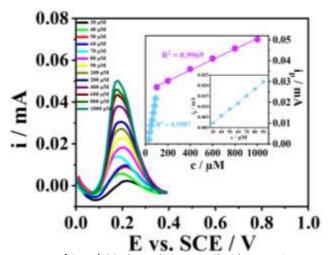


Figure 1. Voltammograms of CoAu/rGO electrode in 1 M HCl with increasing concentrations of As³⁺ with the corresponding standard addition plots in inset.

Acknowledgement: The authors would like to thank the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contract number: 451-03-65/2024-03/200146; 451-03-66/2024-03/200146; 451-03-66/2024-03/200151 and 451-03-47/2024-01/200168), Fundaçãopara a Ciência e a Tecnologia (FCT, Portugal) (contract no. IST-ID/156-2018, B.Š.) and the Turkish Academy of Sciences (TUBA) (O.M.) for the partial financial support.

References

1. K. Radinović, J. Milikić, D.M.F. Santos, A. Saccone, S. De Negri, B. Šljukić, Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys, *J. Electroanal. Chem.* **872** (2020) 114232 https://doi.org/10.1016/j.jelechem.2020.114232